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Classical Statistics

Macrostate and Microstate

A system is characterized by macroscopic parameters such as total no of
molecules inside it, total energy or total volume etc. These parameters are
called macroscopic parameters of the system. The macroscopic state or
macrostate of a system is specified by quoting the macroscopic parameters
and energy of the system.

The microscopic state or the microstate of a system of particles is specified
by writing the state such as position, momentum, orientation of individual
particles.
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Macrostate and Microstate
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Figure: Left column is macrostates and right side is microstates



Ensemble

Large Collection of identical non-interacting systems satifying same
microscopic conditions are called ensemble or statistical ensemble.
Macroscopically we may not distinguish two gases exsisting in different
states, but those gases may be microscopically different.

Micro Canonical Ensemble

Consider, completely isolated system. Microcanonical ensemble is a collection
of identical systems which has fixed volume, fixed total energy and fixed total
number of particles. Exchange of energy is not possible. Exchange of number
of particle is not possible. We define microcanonical ensemble as

ρ(p, q) = constant, for E < Eq < E + ∆E

= 0, otherwise (1)



Ensemble

Canonical Ensemble

Only exchange of energy is possible from the system to surroundings. But
number of particle in each system is fixed. The probability that from such
collection of systems, a system is in ith state, is

Pi =
e−βEi∑
n e
−βEn

(2)

here β = 1
kBT



Ensemble

Grand Canonical Ensemble

In an ensemble where walls of the subsystems are such that, both energy and
no of particles are exchanged between subsystems to bring the subsystem in
equilibrium condition or most faourable condition. This ensemble is called
Grand Canonical Cdistribution.

The probability that n1 systems are in state 1 with energy E1, n2 systems are
in state 2 with energy E2, etc is

W =
1

C

N !

n1!n2! · · ·
(3)

here N is total number of systems in the ensemble. N1 be the number of
particles in each of n1 systems. N2 be the number of particles in each n2

systems.. etc



Ensemble

Grand Canonical Ensemble

Constraint equations∑
i

ni = N ;

∑
i ni〈Ei〉
N

= 〈E〉;
∑

i ni〈Ni〉
N

= 〈N〉 (4)

Number of particles in sth system:

ns = N
e−βEs−αNs∑
k e
−βEk−αNk

(5)

The quantity Partition function for grand canonical distribution is defined as

Z =
∑
k

e−βEk−αNk (6)



Ensemble

Grand Canonical Ensemble

The quantity Partition function for grand canonical distribution is defined as

Z =
∑
k

e−βEk−αNk (7)

The quantity fugacity (in chemistry it is absolute fugacity) is defined as

z = e−βµ (8)



Maxwell Boltzmann Distribution law

Consider a system composed of N distinguishable particles (thus classical
particles!) in a volume V , n1 of which are with energy state ε1, n2 with ε2
etc. We have k such groups. If the particle are non interacting, there are two
constraints, namely total energy and total number of particle

E =
k∑
i

niεi N =
k∑
i

ni (9)

N particles can be arranged in N ! ways. Let us consider again that n1

particles can be distributed in g1 levels in many different ways among
themselves, all having energy ε1. How many ways? First particle can be put
in g1 levels. And so the second particle can be put in g1 levels also. etc. The
arrangements among n1 particles can be distributed in n1! ways, which does
not create any new microstates Thus number of such possibilities

W1 =
gn1
1

n1!
(10)



Maxwell Boltzmann Distribution law

For k such groups total number of microstates are

Ω(gi, ni) = N !×W1 ×W2 · · ·Wk = N ! Πk
i=1

(gi)
ni

ni!
(11)

Now for most probable distribution we have to maximize Ω with respect to
ni. For this we take

log Ω = N logN −N +
∑

ni log gi −
∑

ni log ni +
∑

ni (12)

Variation of log Ω must be zero. Thus

δ(log Ω) =
∑

(log gi − log ni)δni = 0 (13)



Maxwell Boltzmann Distribution law

To include the two constraints mentioned above we introduce Lagrange
undetermined multiplier α and β we∑

[log gi − log ni − (α + βεi)]δni = 0 (14)

ni = gie
−(α+βεi) (15)

Therefore the number of particles per sttae or average occupation number

f(εi) =
ni
gi

= e−(α+βεi) (16)

This is Maxwell-Boltzmann Probability distribution function.



Partition function & Thermodynamic functions of an Ideal gas

Partition function is defined by

Z =
∑
{n}

e−βεn (17)

where the sum is over all possible states. the index n is not on number of
particles, but on number of microstates. Let us write Z for exercise below..

Write the Z for 2 classical particles distributed in 2 energy states ε1 & ε2

Figure: The partition function is Z = e−βE1 + e−βE2 + e−βE3 + e−βE4 , here each
microstae has energies E1 = 2ε2, E2 = 2ε1, E3 = ε1 + ε2 and E4 = ε1 + ε2



Partition function & Thermodynamic functions of an Ideal gas

When you got your Z then

Formula we need in our daily life:

〈E〉 = − ∂

∂β
lnZ = − 1

Z

∂Z

∂β
(18)

CV =

(
∂〈E〉
∂T

)
V

= kBβ
2
(
〈E2〉 − 〈E〉2

)
(19)

F = −NkBT lnZ (20)

S = −
(
∂F

∂T

)
V,N

; P = −
(
∂F

∂V

)
T,N

; µ =

(
∂F

∂N

)
T,V

(21)



Chemical Potential

α is related to chemical potential (µ) as

α = −βµ (22)

z = fugacity = e−α = eµ/kBT (23)



Classical Entropy Expression

S = kB (lnZ + β〈E〉) (24)

Partition function

Z =

∫
e−βE

dq1dq2 · · · dqfdp1dp2 · · · dpf
hf

(25)

for N number of molecules. degree of freedom f = 3N . After doing the
integration we get

Z =
V N

h3N

[
2mπ

β

]3N/2
; 〈E〉 =

3

3
NkBT (26)

S = NkB

[
lnV +

3

2
ln(kBT ) +

3

2
ln(

2πm

h2
) +

3

2

]
(27)



Gibb’s Paradox

Lst us consider two same gas with volume V and number of particle N,
seperated by a card board. Total entropy is
Si = NkBlnV +NkBlnV = 2NkBlnV . If we remove the seperator, the same
two gases mixes and total volume 2V number of particle is 2N . Thus final
entropy is Sf = 2NkBln(2V ). So this mixing process, changes the entropy by
∆S = Sf − Si = 2. But mixing of same two gases by removing a seperator
between them is reversible process. So if we put back the seperator, the
enropy must not change. Change of entropy should be zero. This contradicts
the fomula above. This is known as Gibbs paradox.

The paradox is resolved b considering particle as indistinguishable. Thus for
a classical gas, permutation of N particles in a given state cannot alter state
of gas. The correct counting is 1

N !
fewer states.



Sackur Tetrode equation

Z =
V N

N ! h3N

[
2mπ

β

]3N/2
; 〈E〉 =

3

3
NkBT (28)

S = NkB

[
ln(V/N) +

3

2
ln(kBT ) +

3

2
ln(

2πm

h2
) +

5

2

]
(29)

This above entropy equation is called Sacur Tetrode equation. We can check
for the above example,

∆S = 0



Law of Equipartition of Energy (with proof)

E = αp2i (no sum here) (30)

〈ε〉 =

∫
EeβE dq1dq2 · · · dqf dp1dp2 · · · dpf∫
eβE dq1dq2 · · · dqf dp1dp2 · · · dpf

=
1

2
kBT (31)

Solve the above integration in home work exercise / class..



Applications to Specific Heat and its Limitations

This is from Equipartition of energy theorem. The Hamiltonian can be
written as

H =
1

2m

∑
i

p2i +
k

2

∑
i

q2i (32)

Do the same integration as done before for finding average energy value and
show

〈E〉 = 3kBT (33)

CV = 3R (34)

This is Dulong Petit law.



Thermodynamic Functions of a Two-Energy Levels System

Please attend class for this tutorial.

Find the expressions for P , 〈E〉, F , etc for two level problem. This is very
important problem. Also try to solve the problem for three level problem.



Negative Temperature

Consider a two leven system. And find average occupation number. Then
find

n̄1

n̄2

= exp

(
ε2 − ε1
kBT

)
(35)

form above find, T and see that population inversion can cause negative
temperature. This proves that for a two level system, population inversion
can not happen.


