CC - 14: Statistical Mechanics
 B.Sc Physics (Semester-6)

Department of Physics
Hooghly Women's College

Somenath Jalal
for questions, please ask somenath.jalal@gmail.com
Last updated on April 6, 2020

Classical Statistics

Macrostate and Microstate

A system is characterized by macroscopic parameters such as total no of molecules inside it, total energy or total volume etc. These parameters are called macroscopic parameters of the system. The macroscopic state or macrostate of a system is specified by quoting the macroscopic parameters and energy of the system.

Classical Statistics

Macrostate and Microstate

A system is characterized by macroscopic parameters such as total no of molecules inside it, total energy or total volume etc. These parameters are called macroscopic parameters of the system. The macroscopic state or macrostate of a system is specified by quoting the macroscopic parameters and energy of the system.

The microscopic state or the microstate of a system of particles is specified by writing the state such as position, momentum, orientation of individual particles.

Macrostate and Microstate

4 Heads	HHHH
3 Heads \& 1 Tail	HHHT
	нНTH
	HTHH
	THHH
2 Heads \& 2 Tails	HHTT
	HTHT
	THTH
	HTTH
	THHT
	TTHH
1 Head \& 3 Tails	тTTH
	TTHT
	THTT
	HTTT
4 Tails	TTTT

Figure: Left column is macrostates and right side is microstates

Ensemble

Large Collection of identical non-interacting systems satifying same microscopic conditions are called ensemble or statistical ensemble. Macroscopically we may not distinguish two gases exsisting in different states, but those gases may be microscopically different.

Micro Canonical Ensemble

Consider, completely isolated system. Microcanonical ensemble is a collection of identical systems which has fixed volume, fixed total energy and fixed total number of particles. Exchange of energy is not possible. Exchange of number of particle is not possible. We define microcanonical ensemble as

$$
\begin{align*}
\rho(p, q) & =\text { constant }, \text { for } E<E_{q}<E+\Delta E \\
& =0, \text { otherwise } \tag{1}
\end{align*}
$$

Ensemble

Canonical Ensemble

Only exchange of energy is possible from the system to surroundings. But number of particle in each system is fixed. The probability that from such collection of systems, a system is in ith state, is

$$
\begin{equation*}
P_{i}=\frac{e^{-\beta E_{i}}}{\sum_{n} e^{-\beta E_{n}}} \tag{2}
\end{equation*}
$$

here $\beta=\frac{1}{k_{B} T}$

Ensemble

Grand Canonical Ensemble

In an ensemble where walls of the subsystems are such that, both energy and no of particles are exchanged between subsystems to bring the subsystem in equilibrium condition or most faourable condition. This ensemble is called Grand Canonical Cdistribution.

The probability that n_{1} systems are in state 1 with energy E_{1}, n_{2} systems are in state 2 with energy E_{2}, etc is

$$
\begin{equation*}
W=\frac{1}{C} \frac{N!}{n_{1}!n_{2}!\cdots} \tag{3}
\end{equation*}
$$

here N is total number of systems in the ensemble. N_{1} be the number of particles in each of n_{1} systems. N_{2} be the number of particles in each n_{2} systems.. etc

Ensemble

Grand Canonical Ensemble

Constraint equations

$$
\begin{equation*}
\sum_{i} n_{i}=N ; \quad \frac{\sum_{i} n_{i}\left\langle E_{i}\right\rangle}{N}=\langle E\rangle ; \quad \frac{\sum_{i} n_{i}\left\langle N_{i}\right\rangle}{N}=\langle N\rangle \tag{4}
\end{equation*}
$$

Number of particles in $s^{\text {th }}$ system:

$$
\begin{equation*}
n_{s}=N \frac{e^{-\beta E_{s}-\alpha N_{s}}}{\sum_{k} e^{-\beta E_{k}-\alpha N_{k}}} \tag{5}
\end{equation*}
$$

The quantity Partition function for grand canonical distribution is defined as

$$
\begin{equation*}
Z=\sum_{k} e^{-\beta E_{k}-\alpha N_{k}} \tag{6}
\end{equation*}
$$

Ensemble

Grand Canonical Ensemble

The quantity Partition function for grand canonical distribution is defined as

$$
\begin{equation*}
Z=\sum_{k} e^{-\beta E_{k}-\alpha N_{k}} \tag{7}
\end{equation*}
$$

The quantity fugacity (in chemistry it is absolute fugacity) is defined as

$$
\begin{equation*}
z=e^{-\beta \mu} \tag{8}
\end{equation*}
$$

Maxwell Boltzmann Distribution law

Consider a system composed of N distinguishable particles (thus classical particles!) in a volume V, n_{1} of which are with energy state ϵ_{1}, n_{2} with ϵ_{2} etc. We have k such groups. If the particle are non interacting, there are two constraints, namely total energy and total number of particle

$$
\begin{equation*}
E=\sum_{i}^{k} n_{i} \epsilon_{i} \quad N=\sum_{i}^{k} n_{i} \tag{9}
\end{equation*}
$$

N particles can be arranged in N ! ways. Let us consider again that n_{1} particles can be distributed in g_{1} levels in many different ways among themselves, all having energy ϵ_{1}. How many ways? First particle can be put in g_{1} levels. And so the second particle can be put in g_{1} levels also. etc. The arrangements among n_{1} particles can be distributed in n_{1} ! ways, which does not create any new microstates Thus number of such possibilities

$$
\begin{equation*}
W_{1}=\frac{g_{1}^{n_{1}}}{n_{1}!} \tag{10}
\end{equation*}
$$

Maxwell Boltzmann Distribution law

For k such groups total number of microstates are

$$
\begin{equation*}
\Omega\left(g_{i}, n_{i}\right)=N!\times W_{1} \times W_{2} \cdots W_{k}=N!\Pi_{i=1}^{k} \frac{\left(g_{i}\right)^{n_{i}}}{n_{i}!} \tag{11}
\end{equation*}
$$

Now for most probable distribution we have to maximize Ω with respect to n_{i}. For this we take

$$
\begin{equation*}
\log \Omega=N \log N-N+\sum n_{i} \log g_{i}-\sum n_{i} \log n_{i}+\sum n_{i} \tag{12}
\end{equation*}
$$

Variation of $\log \Omega$ must be zero. Thus

$$
\begin{equation*}
\delta(\log \Omega)=\sum\left(\log g_{i}-\log n_{i}\right) \delta n_{i}=0 \tag{13}
\end{equation*}
$$

Maxwell Boltzmann Distribution law

To include the two constraints mentioned above we introduce Lagrange undetermined multiplier α and β we

$$
\begin{array}{r}
\sum\left[\log g_{i}-\log n_{i}-\left(\alpha+\beta \epsilon_{i}\right)\right] \delta n_{i}=0 \\
n_{i}=g_{i} e^{-\left(\alpha+\beta \epsilon_{i}\right)} \tag{15}
\end{array}
$$

Therefore the number of particles per sttae or average occupation number

$$
\begin{equation*}
f\left(\epsilon_{i}\right)=\frac{n_{i}}{g_{i}}=e^{-\left(\alpha+\beta \epsilon_{i}\right)} \tag{16}
\end{equation*}
$$

This is Maxwell-Boltzmann Probability distribution function.

Partition function \& Thermodynamic functions of an Ideal gas

Partition function is defined by

$$
\begin{equation*}
Z=\sum_{\{n\}} e^{-\beta \epsilon_{n}} \tag{17}
\end{equation*}
$$

where the sum is over all possible states. the index n is not on number of particles, but on number of microstates. Let us write Z for exercise below.. Write the Z for 2 classical particles distributed in 2 energy states $\epsilon_{1} \& \epsilon_{2}$

Figure: The partition function is $Z=e^{-\beta E_{1}}+e^{-\beta E_{2}}+e^{-\beta E_{3}}+e^{-\beta E_{4}}$, here each microstae has energies $E_{1}=2 \epsilon_{2}, E_{2}=2 \epsilon_{1}, E_{3}=\epsilon_{1}+\epsilon_{2}$ and $E_{4}=\epsilon_{1}+\epsilon_{2}$

Partition function \& Thermodynamic functions of an Ideal gas

When you got your Z then

$$
\begin{align*}
\langle E\rangle & =-\frac{\partial}{\partial \beta} \ln Z=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \tag{18}\\
C_{V} & =\left(\frac{\partial\langle E\rangle}{\partial T}\right)_{V}=k_{B} \beta^{2}\left(\left\langle E^{2}\right\rangle-\langle E\rangle^{2}\right) \tag{19}\\
F & =-N k_{B} T \ln Z \tag{20}\\
S & =-\left(\frac{\partial F}{\partial T}\right)_{V, N} ; P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} ; \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V} \tag{21}
\end{align*}
$$

Chemical Potential

α is related to chemical potential (μ) as

$$
\begin{array}{r}
\alpha=-\beta \mu \\
z=\text { fugacity }=e^{-\alpha}=e^{\mu / k_{B} T} \tag{23}
\end{array}
$$

Classical Entropy Expression

$$
\begin{equation*}
S=k_{B}(\ln Z+\beta\langle E\rangle) \tag{24}
\end{equation*}
$$

Partition function

$$
\begin{equation*}
Z=\int e^{-\beta E} \frac{d q_{1} d q_{2} \cdots d q_{f} d p_{1} d p_{2} \cdots d p_{f}}{h^{f}} \tag{25}
\end{equation*}
$$

for N number of molecules. degree of freedom $f=3 N$. After doing the integration we get

$$
\begin{array}{r}
Z=\frac{V^{N}}{h^{3 N}}\left[\frac{2 m \pi}{\beta}\right]^{3 N / 2} ; \quad\langle E\rangle=\frac{3}{3} N k_{B} T \\
S=N k_{B}\left[\ln V+\frac{3}{2} \ln \left(k_{B} T\right)+\frac{3}{2} \ln \left(\frac{2 \pi m}{h^{2}}\right)+\frac{3}{2}\right] \tag{27}
\end{array}
$$

Gibb's Paradox

Lst us consider two same gas with volume V and number of particle N , seperated by a card board. Total entropy is $S_{i}=N k_{B} \ln V+N k_{B} \ln V=2 N k_{B} \ln V$. If we remove the seperator, the same two gases mixes and total volume 2 V number of particle is $2 N$. Thus final entropy is $S_{f}=2 N k_{B} \ln (2 V)$. So this mixing process, changes the entropy by $\Delta S=S_{f}-S_{i}=2$. But mixing of same two gases by removing a seperator between them is reversible process. So if we put back the seperator, the enropy must not change. Change of entropy should be zero. This contradicts the fomula above. This is known as Gibbs paradox.

The paradox is resolved b considering particle as indistinguishable. Thus for a classical gas, permutation of N particles in a given state cannot alter state of gas. The correct counting is $\frac{1}{N!}$ fewer states.

Sackur Tetrode equation

$$
\begin{array}{r}
Z=\frac{V^{N}}{N!h^{3 N}}\left[\frac{2 m \pi}{\beta}\right]^{3 N / 2} ; \quad\langle E\rangle=\frac{3}{3} N k_{B} T \\
S=N k_{B}\left[\ln (V / N)+\frac{3}{2} \ln \left(k_{B} T\right)+\frac{3}{2} \ln \left(\frac{2 \pi m}{h^{2}}\right)+\frac{5}{2}\right] \tag{29}
\end{array}
$$

This above entropy equation is called Sacur Tetrode equation. We can check for the above example,

$$
\Delta S=0
$$

Law of Equipartition of Energy (with proof)

$$
\begin{array}{r}
E=\alpha p_{i}^{2} \quad \text { (no sum here) } \\
\langle\epsilon\rangle=\frac{\int E e^{\beta E} d q_{1} d q_{2} \cdots d q_{f} d p_{1} d p_{2} \cdots d p_{f}}{\int e^{\beta E} d q_{1} d q_{2} \cdots d q_{f} d p_{1} d p_{2} \cdots d p_{f}}=\frac{1}{2} k_{B} T \tag{31}
\end{array}
$$

Solve the above integration in home work exercise / class..

Applications to Specific Heat and its Limitations

This is from Equipartition of energy theorem. The Hamiltonian can be written as

$$
\begin{equation*}
H=\frac{1}{2 m} \sum_{i} p_{i}^{2}+\frac{k}{2} \sum_{i} q_{i}^{2} \tag{32}
\end{equation*}
$$

Do the same integration as done before for finding average energy value and show

$$
\begin{array}{r}
\langle E\rangle=3 k_{B} T \\
C_{V}=3 R \tag{34}
\end{array}
$$

This is Dulong Petit law.

Thermodynamic Functions of a Two-Energy Levels System

Please attend class for this tutorial.

Find the expressions for $P,\langle E\rangle, F$, etc for two level problem. This is very important problem. Also try to solve the problem for three level problem.

Negative Temperature

Consider a two leven system. And find average occupation number. Then find

$$
\begin{equation*}
\frac{\overline{n_{1}}}{\overline{n_{2}}}=\exp \left(\frac{\epsilon_{2}-\epsilon_{1}}{k_{B} T}\right) \tag{35}
\end{equation*}
$$

form above find, T and see that population inversion can cause negative temperature. This proves that for a two level system, population inversion can not happen.

